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Abstract
Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We
introduce and study a classical analogue of LP. We show that corresponding
classical ‘Leonard’ dynamical variables satisfy non-linear relations of the AW-
type with respect to Poisson brackets.

PACS numbers: 02.30.Gp, 02.30.−f, 02.10.−v, 02.40.−k, 45.30.+s

1. Introduction

Let F,G, . . . be classical dynamical variables (DV) that can be represented as differentiable
functions of the canonical finite-dimensional variables qi, pi, i = 1, 2, . . . , N .

The Poisson brackets (PB) {F,G} are defined as [1]

{F,G} =
N∑
i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (1.1)

In particular, for canonical variables one has standard PB [1]

{qi, pj } = δij {qi, qj } = {pi, pj } = 0.

The PB satisfies fundamental properties [1].

(i) PB is a linear function in both F and G;
(ii) PB is anti-symmetric {F,G} = −{G,F };

(iii) PB satisfies the Leibnitz rule {F1F2,G} = F1{F2,G} + F2{F1,G};
(iv) For any dynamical variables F,G,H PB satisfies the Jacobi identity {F, {G,H }} +

{G, {H,F }} + {H, {F,G}} = 0.

Properties (i)–(iv) are trivial consequences of definition (1.1). It is possible, however, to
construct abstract PB starting from the axioms (i)–(iv).

PB are important in classical mechanics because they determine time dynamics: if the
DV H is a Hamiltonian of the system, then for any DV G one has the Poisson equation

Ġ = {G,H }. (1.2)
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In particular, the DV F is called an integral if it has zero PB with the Hamiltonian {F,H } = 0.
In this case F does not depend on t.

In many problems of classical mechanics DV form elegant algebraic structures which are
closed with respect to PB. For example, let H = p2/2 + U(r) be the Hamiltonian describing
motion of a particle in a central field with the potential U(r) depending only on a distance
r = (

q2
1 + q2

2 + q2
3

)1/2
. In this case the components of the angular momentum M = [r,p]

are integrals: {Mi,H } = 0, i = 1, 2, 3. The variablesMi themselves form a classical Poisson
so(3) algebra:

{Mi,Mk} = εikjMj (1.3)

where εikj is a standard completely antisymmetric tensor and summation is assumed with
respect to repeated subscript j .

Algebra (1.3) is the simplest example of the so-called linear Poisson structures (or Poisson
Lie algebras): in all such structures the PB of several basic DV are expressed as linear functions
of these DV.

A less trivial example of self-closed Poisson structures provides the Kepler problem with
the potential U(r) = −α/r . In this case (in addition to the standard angular momentum M )
there exists another integral of motion—the so-called Laplace vector A = [M ,p] + αq/r . It
is easily verified that the components of the two vectors M and A are closed in frames of the
Poisson algebra [14]

{Mi,Mj } = εijkMk {Mi,Aj } = εijkAk {Ai,Aj } = −2HεijkMk (1.4)

where H is the Hamiltonian of the Kepler problem. In this case the PB of the components
Ai,Aj is not a linear function of basic integrals M ,A. However, one can linearize this
algebra if we fix the value of the energy E = H . This leads again to linear Poisson Lie
algebras so(4), so(3, 1) and e(3) depending on the value of the energy E (for details see [14]).

The Poisson structures with non-linear PB were discussed in [15, 11]. Sklyanin introduced
[15] the so-called quadratic Poisson algebra consisting of four DV S0, S1, S2, S3 such that PB
{Si, Sk} is expressed as a quadratic function of the generators Si . The Sklyanin algebra appears
quite naturally from the theory of algebraic structures related to the Yang–Baxter equation in
mathematical physics. Sklyanin also proposed to study general non-linear Poisson structures.
Assume that there exist N dynamical variables Fi, i = 1, 2, . . . , N , such that PB of these
variables are closed in frames of the non-linear relations

{Fi, Fk} = �ik(F1, . . . , FN) i, k = 1, 2, . . . , N (1.5)

where�ik(F1, . . . , FN) are (non-linear, in general) functions of N variables.
Several interesting examples of such non-linear Poisson structures are described in [11].
In [7] another example of such non-linear Poisson algebra was proposed. This example is

connected with the property of ‘mutual integrability’ and leads to the so-called classical AW
relations, where the abbreviation AW means ‘Askey–Wilson algebra’. Indeed, as was shown in
[17], the operator (i.e. non-commutative) version of AW relations has a natural representation
in terms of generic Askey–Wilson polynomials, introduced in [2] (see also [12]).

The motivation of the present work was the concept of the ‘Leonard pairs’ proposed in
[10, 16]. TwoN×N matricesX,Y form a Leonard pair if there exist invertible matrices S and
T such that the matrix S−1XS is diagonal whereas the matrix S−1YS is irreducible tri-diagonal
and similarly, the matrix T −1YT is diagonal whereas the matrix T −1XT is irreducible tri-
diagonal. We will call such a property ‘mutual tri-diagonality’. Leonard showed [13] that the
eigenvalue problem for a Leonard pairX,Y leads to the q-Racah polynomials (for a definition
see, e.g., [12]).
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Terwilliger showed [10, 16] that a Leonard pair X,Y satisfies a certain algebraic relation
with respect to commutators. In turn, the Terwilliger relations follow from the so-called
relations of the AW algebra studied in [17, 7].

In this paper we study a classical analogue of the ‘Leonard pair’ property. We introduce
classical dynamical variablesX and Y satisfying this property and show that X and Y should
satisfy classical Poisson AW relations [7].

2. Algebraic relations for the classical ‘Leonard pair’

In this section, we will assume that all dynamical variables are functions of the two independent
canonical variables q, p with the main relation {q, p} = 1. In what follows we will
assume that q, p are complex numbers and all corresponding complex-valued functions
X(q, p), Y (q, p), . . . are assumed to be analytic (in the usual sense of theory of functions of
several complex variables [6]) in some open domain D of the complex space C2.

We say that DV X(q, p) and Y (q, p) are independent if

{X,Y } ≡ ∂(X, Y )

∂(q, p)
�= 0 (2.1)

in some open domain D, where ∂(X,Y)

∂(q,p)
is the Jacobian. Of course, the initial variables q, p are

independent. Functions X(q, p), Y (q, p) define some map from the open domain D in the
complex space (q, p) to the open domain D̃ in the space of complex variables X,Y . As is
well known [6] condition (2.1) means that in the domain D̃ it is possible to introduce inverse
map q = q(X, Y ), p = p(X, Y ) which is also analytic and maps D̃ to D.

Recall that by canonical transformation (CT) it is assumed an analytical transformation
(q, p) → (x, y) to a pair of new canonical variables x, y. This means that x = x(q, p), y =
y(q, p) are analytic functions in variables q, p and moreover

{x, y} = ∂(x, y)

∂(q, p)
= 1. (2.2)

Clearly, the new variables x, y are independent.

Definition. We say that two independent DV X(q, p) and Y (q, p) form a classical Leonard
pair (CLP) if there exist two canonical transformations (defined in corresponding open
domains of C2) (q, p) → (x, y) and (q, p) → (ξ, η) (with {x, y} = {ξ, η} = 1) such
that in variables x, y the DV X,Y take the form

X = φ(x) Y = A1(x) exp(y) +A2(x) exp(−y) + A3(x) (2.3)

while in the variables ξ, η we have

Y = ψ(ξ) X = B1(ξ) exp(η) + B2(ξ) exp(−η) + B3(ξ) (2.4)

where φ(x),Ai(x), ψ(x), Bi(x) are some analytical functions.

Let us explain the origin of our definitions (2.3) and (2.4). If one replaces X,Y
with non-commuting operators X̂, Ŷ then the Leonard duality means that there exists
a representation in which X̂ is diagonal whereas Ŷ is tri-diagonal. Assume that the
operators X̂, Ŷ are in general infinite dimensional. Then the diagonal representation for
X̂ means that there exists a realization on a space of functions f (x) of a variable x
such that X̂ acts as a multiplication operator X̂f (x) = φ(x)f (x) with some prescribed
function φ(x). Then on the same functional space the tri-diagonal operator Ŷ acts as
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Ŷ f (x) = A1(x)f (x + h) + A2(x)f (x − h) + A3(x)f (x) where h is a complex parameter.
Symbolically, the operator Ŷ can be presented in the form

Ŷ = A1(x) exp(ihŷ) + A2(x) exp(−ihŷ) + A3(x) (2.5)

where ŷ = −i∂x is the canonical momentum operator satisfying the standard commutation
relation [x, ŷ] = i.

Vice versa, the Leonard pair condition means that there exists a dual representation on
the same functional space such that Ŝ−1Ŷ Ŝf (x) = ψ(x)f (x) and

Ŝ−1X̂Ŝ = B1(x) exp(ihŷ) + B2(x) exp(−ihŷ) + B3(x) (2.6)

where Ŝ is an operator providing ‘diagonalization’ of the operator Y .
Then it is natural to define CLP by replacing operators x, ŷ with their classical conjugate

canonical variables x, y or ξ, η. In other words, we formally replace:

(i) all operators X̂, Ŷ , . . . with commuting classical dynamical variables X,Y, . . . .
(ii) commutators [X̂, Ŷ ] with PB (X, Y ) (this is the well-known Dirac procedure of the

correspondence between quantum and classical mechanics [11]).

We thus arrive at our definitions (2.3) and (2.4).
Note that the concept of the Leonard pair is closely related to the so-called bispectrality

problem [5]. We thus arrive also at the classical analogue of the bispectral problem.
Before analysing algebraic relations between X,Y supposed by the property of CLP, let

us find conditions under which variables X,Y are independent. We first calculate Poisson
bracket of the variablesX,Y in the representation (2.3):

Z = {X,Y } = φ′(x)(A1(x) exp(y)− A2(x) exp(−y)). (2.7)

Independence of X,Y means that Z �= 0 in some domain D of two complex variables x, y.
Hence in order for variables X,Y to be independent it is necessary that φ′(x) �= 0 and at
least one of the functions A1(x) and A2(x) is non-zero inside some open domain Dx in the
complex plane x. Moreover, we assume that domain D lies apart from complex curve defined
by A1(x) exp(y)− A2(x) exp(−y) = 0.

Analogously, we assume thatψ ′(η) �= 0 and at least one of the functionsB1(ξ) andB2(ξ)

is non-zero inside some domainDξ in the complex plane ξ .
As a byproduct we have that the function φ(x) is invertible in the domain Dx as well as

the function ψ(ξ) is invertible in the domainDξ .
Now we have obviously

Z2 = (φ′(x))2
(
(Y − A3(x))

2 − 4A1(x)A2(x)
)
. (2.8)

As the function φ(x) is invertible in Dx , one can express x = φ(−1)(X), where φ(−1)(x) is a
function inverted with respect to φ(x).

Then (2.8) means that Z2 is a quadratic function of Y :

Z2 = V1(X)Y
2 + V2(X)Y + V3(X) (2.9)

with some yet unknown (analytic) functions Vi(X).
Quite analogously we can calculate Z2 using representation (2.4):

Z2 = (ψ ′(ξ))2
(
(X − B3(ξ))

2 − 4B1(ξ)B2(ξ)
)
. (2.10)

Again, as ψ(ξ) is an invertible function, in Dξ we have the relation

Z2 = W1(Y )X
2 +W2(Y )X +W3(Y ) (2.11)

i.e. Z2 is a quadratic function of X with unknown functionsWi(Y ).



‘Leonard pairs’ in classical mechanics 5771

Note that relations (2.11), (2.9) are valid in some open domain D̃ of the space of two
complex variables X,Y . Comparing (2.9) and (2.11) we arrive at the functional equation

V1(X)Y
2 + V2(X)Y + V3(X) = W1(Y )X

2 +W2(Y )X +W3(Y ) (2.12)

which should be valid for any values of two independent complex variables X,Y inside the
domain D̃.

Lemma 1. Functional equation (2.12) is valid only if the functions Vi(x),Wi(x), i = 1, 2, 3,
are polynomials of degree not exceeding 2.

Proof. We use the fact that X,Y are independent variables in the domain D̃. Choose three
arbitrary non-coinciding values y1, y2, y3 of Y belonging to this domain. Then (2.12) can
be considered as a system of three different linear equations for three unknown functions
V1(x), V2(x), V3(x), where x is an independent variable. The determinant of this system is
non-zero (because y1, y2, y3 are distinct) and right-hand sides are polynomials of degree at
most 2. Hence this system has a unique solution yielding Vi(x), i = 1, 2, 3, as polynomials
in x of degree at most 2. Due to obvious symmetry between X and Y we can equally obtain
that Wi(x) are also polynomials in x of degree at most 2. �

We thus proved that Z2 should be a non-zero polynomial in two variables X,Y having
degree at most 2 with respect to each variable, i.e.

Z2 = α1X
2Y 2 + α2X

2Y + α3XY
2 + α4X

2 + α5Y
2 + α6XY + α7X + α8Y + α9 (2.13)

with some parameters αi, i = 1, 2, . . . , 9.
From (2.13) we can conclude that the Poisson brackets {Z,X} and {Y,Z} are closed in

frames of the classical AW-algebra. Indeed, we have

0 = {α9,X} = {Z2 − F(X, Y ),X} = Z(2{Z,X} + FY (X, Y )) (2.14)

where

F(X, Y ) = α1X
2Y 2 + α2X

2Y + α3XY
2 + α4X

2 + α5Y
2 + α6XY + α7X + α8Y (2.15)

and FY (X, Y ) denotes partial derivative with respect to Y .
Note that Z �= 0 as X,Y are independent. Hence we can conclude

{X,Z} = 1
2 FY (X, Y ) = Y

(
α1X

2 + α3X + α5
)

+
(
α2X

2 + α6X + α8
) /

2. (2.16)

Quite analogously we obtain

{Z, Y } = 1
2 FX(X, Y ) = X

(
α1Y

2 + α2Y + α4
)

+
(
α3Y

2 + α6Y + α7
) /

2. (2.17)

Thus we get that three dynamical variables X,Y and Z = {X,Y } form Poisson algebra
with relations (2.16) and (2.17). It is easily verified that the Jacobi identity

{X, {Y,Z}} + {Z, {X,Y }} + {Y, {Z,X}} = 0

holds for this algebra. Introduce the dynamical variable

K = Z2 − F(X, Y ) (2.18)

where F(X, Y ) is given by (2.15). It is clear from previous considerations that K plays the
role of the Casimir element of our algebra, i.e.

{K,X} = {K,Y } = {K,Z} = 0.

The Poisson algebra with relations (2.16) and (2.17) was introduced in [7] and is called
the classical AW algebra (i.e. Askey–Wilson algebra). As was noted in the introduction,
generic Poisson algebras with non-linear Poisson brackets were considered in [15, 11]. In
the ‘quantum’ case (i.e. when X and Y are operators) the AW relations were considered in
[17, 7].
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Remark. If α1 = α2 = α3 = 0 (i.e. the function F(X, Y ) has degree at most 2) then AW
algebra is reduced to a Lie–Poisson algebra:

{Z,X} = −α5Y − (α6X + α8)/2
(2.19)

{Y,Z} = −α4X − (α6Y + α7)/2

which is linear with respect to generatorsX,Y . The constant terms α8, α7 in rhs of (2.19) can
be avoided by shifts X → X + const, Y → Y + const.

We mention also a remarkable property of the classical AW algebra [7]. Assume that
X is chosen as Hamiltonian: H = X. Then we have Ẏ = {Y,H } = −Z. From (2.13) we
then obtain Ẏ 2 = F(H, Y ) + α9 = quadratic in Y . Hence Y (t) is an elementary function
in the time t. This means that Y (t) = G1(H) exp(ω(H)t) + G2(H) exp(−ω(H)t) + G3(H)

or Y (t) = G1(H)t
2 + G2(H)t + G3(H), where Gi(H), ω(H) are some functions in the

Hamiltonian H. Due to obvious symmetry between X,Y , the same property holds if one
chooses Y as Hamiltonian: H = Y . In this case X(t) behaves as elementary function in the
time t. This property was called ‘mutual integrability’ in [7]. It can be considered as classical
analogues of the property of ‘mutual tri-diagonality’ [16, 10] in the ‘quantum’ case.

We thus have

Proposition 1. If dynamical variables X,Y form CLP then they should satisfy Poisson AW
algebra (2.16), (2.17).

Moreover we have

Proposition 2. Let X(q, p), Y (q, p) denote independent classical dynamical variables and
put Z = {X,Y }. Then the following are equivalent:

(i) X,Y,Z satisfy algebraic relations (2.17), (2.16);
(ii) {K,X} = {K,Y } = 0, where K = Z2 − F(X, Y ), and where F(X, Y ) has expression

(2.15).

Proof. We already showed (ii) → (i). The inverse statement is verified directly using the
Leibnitz rule for Poisson brackets. �

Remark. If {K,X} = {K,Y } = 0 for some dynamical variable K then {K,Z} = 0 as follows
from the Jacobi identity.

3. Representations of the AW relations

In the previous section we showed that AW relations are a necessary condition for two variables
X(q, p), Y (q, p) to form CLP. In this section we show that this condition is sufficient under
some non-degeneracy restriction upon the parameters αi .

Definition. We say that AW relations (2.17), (2.16) are non-degenerate if at least one of the
three parameters α1, α3, α5 is non-zero, and at least one of the three parameters α1, α2, α4

is non-zero. This can be written in a concise form as

|α1|2 + |α3|2 +
∣∣α2

5

∣∣ �= 0 |α1|2 + |α2|2 + |α4|2 �= 0. (3.1)

Proposition 3. If two independent variables X(q, p), Y (q, p) satisfy non-degenerate AW
relations (2.17), (2.16), then the variablesX,Y form CLP.
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Proof. By proposition 2 relations (2.17), (2.16) for two independent variables X,Y are
equivalent to the existence of a non-zero polynomial F(X, Y ) = α1X

2Y 2 + · · · + α8Y in two
variablesX,Y such that {K,X} = {K,Y } = 0, whereK = Z2 − F(X, Y ).

So, assume that there exist nine parameters α1, . . . , α9 such that

Z2 = α1X
2Y 2 + · · · + α8Y + α9 (3.2)

where non-degeneracy conditions (3.1) are fulfilled. Choose a new variable (x ′, y ′) (not
necessarily canonical) such that X = x ′. Then Y = �(x ′, y ′) with some function �(x ′, y ′).
The function �(x ′, y ′) can be chosen in such a manner that the variable y ′ is canonical
conjugate with respect to x ′, i.e. {x ′, y ′} = 1. Indeed, from (3.2) it is sufficient that function
�(x ′, y ′) should satisfy the differential equation:

�2
y′(x

′, y ′) = π1(x
′)�2(x ′, y ′) + π2(x

′)�(x ′, y ′) + π3(x
′) (3.3)

where

π1(x) = α1x
2 + α3x + α5 π2(x) = α2x

2 + α6x + α8 π3(x) = α4x
2 + α7x + α9.

(3.4)

Condition (3.1) means that π1(x) �= 0. Then from (3.3) it follows that

�(x ′, y ′) = a1(x
′) exp(σ (x ′)y ′) + a2(x

′) exp(−σ(x ′)y ′) + a0(x
′) (3.5)

where

σ 2(x) = π1(x) (3.6)

and

a0(x) = − π2(x)

2π1(x)
4a1(x)a2(x) = π2

2 (x)

4π2
1 (x)

− π3(x)

π1(x)
. (3.7)

Note that the rational function a0(x) is determined uniquely, while the functions a1(x), a2(x)

are determined only through their product.
Now we can change canonical variables (x ′, y ′) → (x, y) in such a manner that

x ′ = φ(x) y ′ = y/φ′(x)

where φ(x) is some function and φ′(x) is its derivative. The fundamental relation {x, y} = 1
is fulfilled automatically. Choose the function φ(x) as a solution of the differential equation

φ′2(x) = π1(φ(x)) = α1φ
2(x) + α3φ(x) + α5 (3.8)

(clearly, solution of this equation is elementary and depends on αi, i = 1, 3, 5, see below).
As π1(x) �= 0, the function φ(x) is not a constant. Taking into account σ 2(x) = π1(x) we
have in new variables x, y

X = φ(x) Y = A1(x) ey + A2(x) e−y +A0(x) (3.9)

where Ai(x) = ai(φ(x)), i = 1, 2, 3.
But then we return to condition (2.3).
Note that the function φ(x) can be easily found from (3.8)

(i) if α1 �= 0 then φ(x) = C1 eωx + C2 e−ωx + C3, where ω2 = α1, C3 = −α3/(2α1), C
2
3 −

4C1C2 = α5/α1;
(ii) if α1 = 0 and α3 �= 0 then φ(x) = C1x

2 +C2x+C3, whereC1 = α3/4, C2
2 −4C1C3 = α5.

(iii) if α1 = α3 = 0 and α5 �= 0 then φ(x) = √
α5x + C, where C is an arbitrary constant.
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The function A0(x) is determined uniquely:

A0(x) = − π2(φ(x))

2π1(φ(x))
(3.10)

while for A1(x) and A2(x) only their product V (x) is determined uniquely

V (x) ≡ A1(x)A2(x) = D(φ(x))

16π2
1 (φ(x))

(3.11)

where

D(φ) = π2
2 (φ)− 4π1(φ)π3(φ) (3.12)

is a polynomial in φ of degree at most 4.
If D(φ) = 0 then �(x, y) is

�(x, y) = A1(x) ey +A0(x) or �(x, y) = A2(x) e−y +A0(x) (3.13)

where A1(x) and A2(x) are arbitrary analytical functions. The reason that only V (x) is
determined uniquely can easily be explained. Indeed, there exists the obvious canonical
transformation x → x, y → y + f (x), where f (x) is an arbitrary function. Such
transformation preserves the ‘tri-diagonality’ of the variable Y (2.3) but changes the functions
A1,2(x): A1 → A1 ef (x) and A2 → A1 e−f (x). Clearly, the product V (x) = A1(x)A2(x) is
invariant with respect to such canonical transformation.

We can use this freedom to reduce �(x, y) to a standard form. For example, we can
always choose coordinates in such a way that

�(x, y) = ey + V (x) e−y +A0(x) (3.14)

or

�(x, y) = 2
√
V (x) cosh(y) + A0(x) (3.15)

forD(φ) �= 0 and

�(x, y) = ey +A0(x) (3.16)

forD(φ) = 0.
Note that φ(x),A0(x), V (x) are elementary functions of the argument x.
Using symmetry between X and Y in AW relations we see that there exists a canonical

transformation (q, p) → (ξ, η) such that Y = ψ(ξ),X = B1(ξ) eη +B2(ξ) e−η +B3(η)where
ψ(ξ) satisfies the equation

ψ ′2(x) = α1ψ
2(x) + α2ψ(x) + α4

and functions Bi(ξ), i = 1, 2, 3, have the expressions similar to (3.7). Hence starting
from AW-relations (2.16), (2.17) we proved that there exist two canonical transformations
(q, p) → (x, y) and (q, p) → (ξ, η) with the properties (2.3), (2.4).

We thus proved proposition 3. �

Remark. From our considerations it follows that canonical variables x, y can take all
possible complex values (apart from points where φ′(x) = 0 and A1(x) = A2(x) = 0
and points belonging to the curve A1(x) exp(y) − A2(x) exp(−y) = 0). Inverse functions
x = x(X, Y ), y = y(X, Y ) are defined uniquely on smaller domains but one can use the
standard technique of Riemannian surfaces to define corresponding analytic functions. The
same is valid for variables ξ, η.

From relations (2.17) and (2.16) we obtain as an obvious consequence the following
relations

{X, {X, {X,Y }}} = {
X,α1X

2Y + α3XY + α5Y
}

(3.17)
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and

{Y, {Y, {Y,X}}} = {
Y, α1Y

2X + α2XY + α4X
}
. (3.18)

Relations (3.17) and (3.18) are exact classical analogies of those obtained in [16] to describe
Leonard pairs (in [16] relations PB {, } are replaced with commutators [, ]).

A non-trivial question is: whether relations (3.17) and (3.18) are sufficient to determine
CLP?

The answer is positive for one-dimensional representations of Poisson algebra generated
by (3.17) and (3.18), i.e. when X(q, p) and Y (q, p) depend only on two canonical variables
q, p.

Indeed, assume that two independent DVX(q, p), Y (q, p) satisfy relations (3.17), (3.18).
Then it is possible to choose new canonical variables (x, y) such that X = x, Y = �(x, y).
From (3.17) we then obtain the equation upon the function�(x, y)

�yyy(x, y) = (
α1x

2 + α3x + α5
)
�y(x, y)

(�y(x, y) denotes partial derivative with respect to y). This equation has general solution

�(x, y) = C1(x) eσ (x)y + C2(x) e−σ (x)y + C3(x) (3.19)

where C1(x), C2(x), C3(x) are arbitrary functions of the argument x and σ(x) is given by
(3.6). Performing canonical transformations x → φ(x), y → y/φ′(x) with φ(x) given by
(3.8) we arrive at the representation (2.3). Due to symmetry betweenX,Y this means that for
one-dimensional representations the variablesX,Y satisfy relations (2.3) and (2.4) and hence
form a classical Leonard pair.

We thus arrive at:

Proposition 4. Assume thatX(q, p), Y (q, p) are two independent DV andZ = {X,Y }. Then
the following statements are equivalent:

(i) X(q, p) and Y (q, p) form a CLP;
(ii) X(q, p), Y (q, p) and Z(q, p) satisfy AW relations (2.17), (2.16) with conditions (3.1);

(iii) X(q, p) and Y (q, p) satisfy relations (3.17), (3.18) with the same conditions.

Note that if α1 = α2 = α3 = 0 then the Terwilliger relations (3.17), (3.18) become
so-called classical Dolan–Grady relations [4, 3]:

{X, {X, {X,Y }}} = α5{X,Y } {Y, {Y, {Y,X}}} = α4{Y,X}. (3.20)

It is seen from (2.17) and (2.16) that for one-dimensional representations the classical Dolan–
Grady relations are reduced to some algebra with linear PB

{X,Y } = Z {Z,X} = −(α5Y + α6X/2 + α8/2) {Y,Z} = −(α4X + α6Y/2 + α7/2) .

(3.21)

Shifting generatorsX → X + β1, Y → Y + β2 with appropriately chosen constants β1, β2 we
can get rid of the constants α7, α8.

4. Degenerate Leonard pairs

So far, we assumed that the AW algebra was non-degenerate, i.e. at least one of the parameters
α1, α3, α5 (and also α1, α2, α4) is non-zero.

In this section we consider the degenerate case. Assume that

α1 = α3 = α5 = 0 (4.1)
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and at least one of the parameters α2, α6, α8 is non-zero. This means that π1(x) ≡ 0 but
π2(x) �= 0.

We are seeking representations of the AW relations in new canonical variables x, y such
that X = φ(x), Y = �(x, y) such that

φ′2(x) = π2(φ(x))/2 = (
α2φ

2(x) + α6φ(x) + α8
) /

2. (4.2)

Then for�(x, y) we have the equation

�2
y(x, y) = 2�(x, y) + 2

π3(φ)

π2(φ)
. (4.3)

The general solution of this equation is

�(x, y) = Y = (y + f (x))2/2 + u(x) (4.4)

where f (x) is an arbitrary function of x and

u(x) = −π3(φ(x))

π2(φ(x))
. (4.5)

It is possible to put f (x) = 0 by an appropriate trivial canonical transformation x → x, y →
y − f (x). Then we have

Y = y2/2 + u(x). (4.6)

That is, in the degenerate case Y can be reduced to the ordinary non-relativistic one-particle
Hamiltonian y2/2 + u(x) with the potential u(x).

If one has π1(x) ≡ π2(x) ≡ 0 but π3(x) �= 0 then it is possible to get a representation of
the AW algebra in the form

X = φ(x) Y = y + f (x) (4.7)

where φ(x) satisfies the equation

φ′2(x) = π3(φ(x)) (4.8)

and f (x) is an arbitrary function. Again it is possible to put f (x) = 0 by the same canonical
transformation. That is, in this case we have that Y coincides with the momentum y.

Note that in both cases the function φ(x) has the expression of the form φ(x) =
C1 eωx + C2 e−ωx + C3 or φ(x) = C1x

2 + C2x + C3 where at least one of the constants
C1, C2 is non-zero.

Definition. We will call a generalized classical Leonard pair (GCLP) a pair of independent
classical dynamical variables X(q, p), Y (q, p) such that there exist two canonical
transformations (q, p) → (x, y) and (q, p) → (ξ, η) such that in coordinates (x, y) one
has X = φ(x), and Y is either A1(x) ey + A2(x) e−y + A3(x) or A1(x)y

2 + A2(x)y + A3(x)

with some functionsφ(x),Ai(x), i = 1, 2, 3 (in both cases it is assumed that at least one of the
functions A1(x) or A2(x) is non-zero). Analogously, in coordinates (ξ, η) one has Y = ψ(ξ)

andX is either B1(ξ) eη +B2(ξ) e−η +B3(ξ) orB1(ξ)η
2 +B2(ξ)η+B3(ξ) with some functions

ψ(ξ), Bi(ξ), i = 1, 2, 3 (again at least one of the functions B1(x) or B2(x) is non-zero).

It is easy to show (repeating previous considerations) that if variables X,Y form GCLP
then they satisfy AW relations.

We thus have

Proposition 5. Two statements are equivalent:

(i) variables X(q, p), Y (q, p) form GCLP;
(ii) variables X(q, p), Y (q, p) and Z = {X,Y } satisfy AW relations (2.16), (2.17).

This proposition gives complete characterization of the GCLP.
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We would like to comment on the relation between non-degenerate Y = A1(x) ey +
A2(x) e−y +A3(x) and degenerate Y = A1(x)y

2 +A2(x)y+A3(x) realizations. By a canonical
transformation x → κ−1x, p → κp one can rewrite the non-degenerate realization in the form
Y = A1(x; κ) eκp +A2(x; κ) e−κp +A3(x; κ). In the limit κ → 0 we can, in principle, obtain
degenerate realization (if the functions Ai(x; κ) behave appropriately in this limit).

5. Multidimensional representations

So far, we have restricted ourselves to the one-dimensional representations of corresponding
algebraic relations. It is natural to ask whether multi-dimensional representations can provide
another (more complicated) algebraic structure, which does not coincide with AW relations.

The answer is positive and we show this using the simplest example of the Dolan–
Grady algebra. The generic case of multi-dimensional representations should be considered
separately.

It is well known that the Dolan–Grady relations [4]

[A1, [A1, [A1, A0]]] = 16[A1, A0] [A0, [A0, [A0, A1]]] = 16[A0, A1] (5.1)

generate an infinite-dimensional linear Onsager algebra [3]:

[An,Am] = 4Gn−m
[Gn,Am] = 2An+m − 2Am−n (5.2)

[Gn,Gm] = 0 n = 0, ±1,±2, . . . .

In these relations [,] denotes commutator of the operators Am,Gm. ‘One-dimensional
representations’ of this algebra are equivalent to representations of sl2 algebra; however,
there are ‘multi-dimensional’ representations as well which can be presented as a direct sum
of a finite number of irreducible representations of sl2 algebra. These representations cannot
be reduced to one-dimensional ones. For details see, e.g., [3].

We consider the classical analogue of this statement. By appropriate scaling of the
variablesX,Y we can choose the following classical analogue of the Dolan–Grady relations

{X, {X, {X,Y }}} = −{X,Y } {Y, {Y, {Y,X}}} = −{Y,X}. (5.3)

Let J (i)a , a = 1, 2, 3, i = 1, 2, . . . , N , be a set of independent classical sl2 Poisson
algebras satisfying relations{

J (i)a , J
(k)
b

}
= δik εabcJ

(i)
c . (5.4)

We choose the following realization of the relations (5.3)

X =
N∑
i=1

αiJ
(i)

1 + βiJ
(i)

2 Y =
N∑
i=1

γiJ
(i)

1 + δiJ
(i)

2 . (5.5)

Then it is easily verified that relations (5.3) hold if

αi = cos θi βi = sin θi γi = cosφi δi = sin φi (5.6)

where φi and θi, i = 1, 2, . . . , N , are arbitrary parameters. If N = 1 we return to the special
case of the one-dimensional representation of the Dolan–Grady relations. In this case X,Y
and Z themselves satisfy sl2 relations as expected. However for N > 1 and arbitrary φi, θi
it is impossible to reduce realization (5.5) to simple sl2 relations. This means that classical
Dolan–Grady relations admit multi-dimensional representations which cannot be reduced to
one-dimensional ones. One can expect that a similar situation occurs for the general case of
relations (3.17), (3.18). The classification of algebraic relations admitting non-trivial multi-
dimensional representations is an interesting open problem.
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6. Examples of classical Leonard pairs

In this section we give some explicit examples of GCLP.
Our first example is quite elementary and is based on the classical Lie–Poisson algebra

sl2 defined by the relations

{N0, N±} = ±N± {N−, N+} = 2N0. (6.1)

The Casimir element of this algebra is

N2 = N2
0 −N+N−. (6.2)

We start from a realization of the algebra (6.1) by canonical variables q, p

N− = q2p + 2νq N+ = p N0 = qp + ν (6.3)

with an arbitrary parameter ν. In the realization (6.3) the Casimir element takes the value
N2 = ν2.

Let us take

X = N0 − ν = qp Y = N− + N+ = q2p + 2νq + p. (6.4)

In this case Z = p − q2p − 2νq . It is seen that variables X,Y are independent (i.e. Z �= 0)
in a whole C2 apart from a set of complex points (q, p) belonging to the complex curve
p(1 − q2) = 2νq . So it is sufficient to take any open domain D not belonging to this curve.

Hence

Z2 = Y 2 − 4X2 − 8νX.

This means that we have a non-degenerate Leonard pair.
It is easily verified that representation X = x, Y = ey + (x2 + 2νx) e−y provides a

canonical transformation from the variables q, p to new canonical variables x, y. Similarly,
the representation X = eη + (ν2−ξ 2)

4 e−η − ν, Y = 2iξ provides a canonical transformation
from q, p to the canonical variables ξ, η.

It is interesting to note that X,Y are linear functions of the momentum p. On the other
hand, Y is a combination of two exponents exp(±y) from the new momentum y.

Consider now examples of degenerate CLP. The first example is trivial: a pair of canonical
variables X = q, Y = p form degenerate CLP. The canonical variables x, y coincide with
q, p and the dual variables are ξ = −p, η = q .

The second example of degenerate Leonard pair is the choice: X = q, Y = p2 +q2. Note
that Y coincides with the Hamiltonian of the harmonic oscillator [1]. In this example the
variables x, y merely coincide with q, p because Y is already a quadratic function of p = y.
Calculating Z2 = 4p2 = 4(Y −X2) we see that X,Y are independent for all complex values
q, p apart from p = 0. The variable Z satisfies condition (2.13) and hence X,Y indeed form
degenerate CLP. Omitting elementary calculations, we give the dual picture in the coordinates
ξ, η: X = exp(η) + iξ/2 exp(−η), Y = 2iξ .

This example can be generalized in the following way.
Let us take

X = φ(x) Y = y2/2 + u(x) (6.5)

with some functions φ(x) and u(x). Such a choice corresponds to our definition of degenerate
CLP. Note that Y in the form (6.5) coincides with the Hamiltonian of one-dimensional
motion in the potential u(x) [1]. Consider, when X,Y form a Leonard pair. We have
Z = {X,Y } = yφ′(x). On the other hand, from (2.13) we should have

Z2 = y2φ′2(x) = α2X
2Y + α4X

2 + α6XY + α7X + α8Y + α9 (6.6)
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(clearly α1 = α3 = α5 = 0 because all terms in (2.13) containing these coefficients have
degree more than 2 with respect to the variable y).

From (6.6) we obtain that in order for X,Y to form GCLP, the following two conditions
are necessary and sufficient:

2φ′2(x) = α2φ
2(x) + α6φ(x) + α8 (6.7)

and

U(x) = −α4φ
2(x) + α7φ(x) + α9

α2φ2(x) + α6φ(x) + α8
. (6.8)

Condition (6.7) is a simple differential equation for the function φ(x). Condition (6.8)
then gives possible potentialsU(x) admitted by the requirement thatX,Y form GLP. To within
affine transformations of the variable x → β1x + β2 (with real parameters β1, β2) there are
essentially six types of the admitted potentials:

(i) hyperbolic Pöschl–Teller potential u(x) = C1 tanh2(x) + C2 tanh−2(x) + C3;
(ii) modified hyperbolic Pöschl–Teller potential u(x)= (

C1 sinh2 +C2 sinh(x)+C3
)/

cosh2(x);
(iii) trigonometric Pöschl–Teller potential u(x) = C1 tan2(x) + C2 tan−2(x) + C3;
(iv) Morse potential u(x) = C1 e−2x + C2 e−x + C3

(v) singular oscillator u(x) = C1x
2 + C2x

−2 + C3

(vi) shifted oscillator u(x) = C1x
2 + C2x + C3.

In all cases parameters C1, C2, C3 can take any real values. The potentials of cases
(i)–(iii) correspond toα2 �= 0 andα2

6 − 4α2α8 �= 0. The Morse potential (case (iv)) corresponds
to α2 �= 0 and α2

6 − 4α2α8 = 0. The singular oscillator potential (case (v)) corresponds to
α2 = 0, α6 �= 0. The shifted oscillator potential corresponds to α2 = α6 = 0, α8 �= 0.

Note that AW-algebra corresponding to the cases (i)–(vi) is reduced to the so-called
Jacobi algebra. For further details concerning this algebra and corresponding potentials (in
both classical and quantum cases) see, e.g., [7].

Finally, consider a simple example of AW algebra connected with the classical slq (2)
algebra (in [9] we considered an operator version of this example). Recall that this algebra
consists of three generatorsA0, A+, A− and is defined by the relations

{A0, A±} = ±A± {A−, A+} = 2g sinh(2ωA0) (6.9)

where g and ω are arbitrary parameters. In the limit ω → 0, g = 1/(2ω) we arrive at the
classical sl(2) algebra

{A0, A±} = ±A± {A−, A+} = 2A0. (6.10)

The algebra slq (2) has the Casimir element

q = A+A− − g cosh(2ωA0)/ω. (6.11)

Assume that we have a representation of the classical slq (2) algebra with fixed value q of the
Casimir element q. Choose the variables

X = (a1A+ + a2A− + a3 exp(ωA0)) exp(ωA0)
(6.12)

Y = (b1A+ + b2A− + b3 exp(−ωA0)) exp(−ωA0).

Using relations (6.9) we have

Z = {X,Y } = 2ω
(
a1b1A

2
+ − a2b2A

2
− +

(
a1b3 eωA0 + a3b1 e−ωA0

)
A+

− (
a2b3 eωA0 + a3b2 e−ωA0

)
A−

)
+ 2g(a2b1 − a1b2) sinh(2ωA0). (6.13)
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EvaluatingZ2 and taking into account relation (6.11) we can verify that relation (2.18) is valid
where

α1 = 4ω2 α2 = α3 = 0 α4 = −8b1b2gω α5 = −8a1a2gω

α6 = −8ω2(q(a1b2 + a2b1) + a3b3)

α7 = −8ω(2ωqb1b2a3 + gb3(a1b2 + a2b1)) (6.14)

α8 = −8ω(2ωqa1a2b3 + ga3(a1b2 + a2b1))

α9 = 4(−g2 + q2ω2)(a1b2 − b1a2)
2 + 4ω2a2

3b
2
3

− 8gω
(
b1b2a

2
3 + a1a2b

2
3

) − 8qω2a3b3(a1b2 + a2b1).
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